85 research outputs found

    Belga B-trees

    Full text link
    We revisit self-adjusting external memory tree data structures, which combine the optimal (and practical) worst-case I/O performances of B-trees, while adapting to the online distribution of queries. Our approach is analogous to undergoing efforts in the BST model, where Tango Trees (Demaine et al. 2007) were shown to be O(loglogN)O(\log\log N)-competitive with the runtime of the best offline binary search tree on every sequence of searches. Here we formalize the B-Tree model as a natural generalization of the BST model. We prove lower bounds for the B-Tree model, and introduce a B-Tree model data structure, the Belga B-tree, that executes any sequence of searches within a O(loglogN)O(\log \log N) factor of the best offline B-tree model algorithm, provided B=logO(1)NB=\log^{O(1)}N. We also show how to transform any static BST into a static B-tree which is faster by a Θ(logB)\Theta(\log B) factor; the transformation is randomized and we show that randomization is necessary to obtain any significant speedup

    As ocupações neolíticas em lapiás: o caso de Negrais (Sintra)

    Get PDF
    Novas perspectivas de leitura em torno do Complexo de Negrais (Sintra, Portugal) onde se verificou a associação de vários sítios a uma paisagem muito peculiar proporcionada pelos campos de lapiás. Estas fortificações rochosas calcárias criam um ambiente fechado com abrigos e caminhos labirínticos que foram ocupados desde inícios do Neolítico até finais do Calcolítico. Apesar de apenas contarmos com dados descontextualizados a longevidade da ocupação nos lapiás de Negrais funciona como indicador dos vários momentos cronológico-culturais do Neolítico e Calcolítico da Estremadura Meridional.New perspectives upon the arcaheological sites of Negrais (Sintra, Portugal) where several sites are associated in a peculiar surrounding the fields of "lapiás". These limestone rock formations create a closed environment with shelters, labyrinth paths that had been chosen by peasants since the early Neolithic till the late Chalcolithic. A specific study was made about two of the most significant sites: Barruncheiros and Pedraceiras.info:eu-repo/semantics/publishedVersio

    Germline Transgenic Pigs by Sleeping Beauty Transposition in Porcine Zygotes and Targeted Integration in the Pig Genome

    Get PDF
    Genetic engineering can expand the utility of pigs for modeling human diseases, and for developing advanced therapeutic approaches. However, the inefficient production of transgenic pigs represents a technological bottleneck. Here, we assessed the hyperactive Sleeping Beauty (SB100X) transposon system for enzyme-catalyzed transgene integration into the embryonic porcine genome. The components of the transposon vector system were microinjected as circular plasmids into the cytoplasm of porcine zygotes, resulting in high frequencies of transgenic fetuses and piglets. The transgenic animals showed normal development and persistent reporter gene expression for >12 months. Molecular hallmarks of transposition were confirmed by analysis of 25 genomic insertion sites. We demonstrate germ-line transmission, segregation of individual transposons, and continued, copy number-dependent transgene expression in F1-offspring. In addition, we demonstrate target-selected gene insertion into transposon-tagged genomic loci by Cre-loxP-based cassette exchange in somatic cells followed by nuclear transfer. Transposase-catalyzed transgenesis in a large mammalian species expands the arsenal of transgenic technologies for use in domestic animals and will facilitate the development of large animal models for human diseases

    The impact of transposable element activity on therapeutically relevant human stem cells

    Get PDF
    Human stem cells harbor significant potential for basic and clinical translational research as well as regenerative medicine. Currently ~ 3000 adult and ~ 30 pluripotent stem cell-based, interventional clinical trials are ongoing worldwide, and numbers are increasing continuously. Although stem cells are promising cell sources to treat a wide range of human diseases, there are also concerns regarding potential risks associated with their clinical use, including genomic instability and tumorigenesis concerns. Thus, a deeper understanding of the factors and molecular mechanisms contributing to stem cell genome stability are a prerequisite to harnessing their therapeutic potential for degenerative diseases. Chemical and physical factors are known to influence the stability of stem cell genomes, together with random mutations and Copy Number Variants (CNVs) that accumulated in cultured human stem cells. Here we review the activity of endogenous transposable elements (TEs) in human multipotent and pluripotent stem cells, and the consequences of their mobility for genomic integrity and host gene expression. We describe transcriptional and post-transcriptional mechanisms antagonizing the spread of TEs in the human genome, and highlight those that are more prevalent in multipotent and pluripotent stem cells. Notably, TEs do not only represent a source of mutations/CNVs in genomes, but are also often harnessed as tools to engineer the stem cell genome; thus, we also describe and discuss the most widely applied transposon-based tools and highlight the most relevant areas of their biomedical applications in stem cells. Taken together, this review will contribute to the assessment of the risk that endogenous TE activity and the application of genetically engineered TEs constitute for the biosafety of stem cells to be used for substitutive and regenerative cell therapiesS.R.H. and P.T.R. are funded by the Government of Spain (MINECO, RYC-2016- 21395 and SAF2015–71589-P [S.R.H.]; PEJ-2014-A-31985 and SAF2015–71589- P [P.T.R.]). GGS is supported by a grant from the Ministry of Health of the Federal Republic of Germany (FKZ2518FSB403)

    Greedy Is an Almost Optimal Deque

    No full text
    In this paper we extend the geometric binary search tree (BST) model of Demaine, Harmon, Iacono, Kane, and Pǎtraşcu (DHIKP) to accommodate for insertions and deletions. Within this extended model, we study the online Greedy BST algorithm introduced by DHIKP. Greedy BST is known to be equivalent to a maximally greedy (but inherently offline) algorithm introduced independently by Lucas in 1988 and Munro in 2000, conjectured to be dynamically optimal. With the application of forbidden-submatrix theory, we prove a quasilinear upper bound on the performance of Greedy BST on deque sequences. It has been conjectured (Tarjan, 1985) that splay trees (Sleator and Tarjan, 1983) can serve such sequences in linear time. Currently neither splay trees, nor other general-purpose BST algorithms are known to fulfill this requirement. As a special case, we show that Greedy BST can serve output-restricted deque sequences in linear time. A similar result is known for splay trees (Tarjan, 1985; Elmasry, 2004). As a further application of the insert-delete model, we give a simple proof that, given a set U of permutations of [n], the access cost of any BST algorithm is Ω(logU+n)\Omega ( \log \vert U \vert + n) on “most” of the permutations from U. In particular, this implies that the access cost for a random permutation of [n] is Ω(nlogn)\Omega {(n\log {n})} with high probability. Besides the splay tree noted before, Greedy BST has recently emerged as a plausible candidate for dynamic optimality. Compared
    corecore